16% OF NET SALES FROM PHARMACEUTICALS

4% OF NET SALES FROM DERMOCOSMETICS

AMOUNTS ALLOCATED TO R&D IN 2015

Almost 200 million euros

Amounts allocated to R&D reflect the importance that we attach to the discovery and development of innovative therapeutic and well-being solutions, from health to beauty. Pierre Fabre combines pharmaceuticals research and dermo-cosmetics research, thus creating novel links between these different fields. The Group makes use of cross-functional expertise, in particular, research on plants and expert knowledge on active ingredients of natural or biotechnological origin.

Amounts allocated to R&D in 2015

Oncology:
We are allocating 50% of our medical research budget to oncology, which is the priority area for innovation. Our research is focused on areas with major medical needs, namely solid tumors, notably melanoma, glioblastoma (a type of brain cancer), head and neck cancers, or cancers of the upper digestive tract, such as those of the aerodigestive tract, as well as skin cancer (melanoma) and certain blood cancers such as leukemia. The crossroads of our expertise in dermatology and oncology, onco-dermatology has become a vital area of our R&D in recent years.

Central Nervous System:
Our researchers are working to develop therapeutic solutions in the treatment of schizophrenia, bipolar disorders and depressive disorders.

Consumer Health Care:
The consumer health care innovation unit covers a broad spectrum of solutions in the areas of family health care, oral care and natural health care. In this domain, we are developing drugs as well as medical devices, dietary supplements and cosmetics, with the aim of meeting every individual’s needs on a daily basis.

Dermo-Cosmetics:
Our researchers are identifying potential active ingredients and new targets. They are developing suitable knowledge and methods to better understand the physiology of normal skin and skin suffering from a condition, to provide the most comprehensive cosmetology offering possible, from support for skin problems to care for the face and scalp.

Dermatological Rx:
In this area, we are focusing our innovative efforts on treating infantile hemangioma, atopic dermatitis, orphan diseases and onco-dermatological illnesses. The development of new topical treatments for the management of these skin cancers – notably basal-cell carcinomas and actinic keratoses – are our priority more than ever before.

Translational medicine: from laboratory to patient

The emerging scientific discipline of translational medicine bridges the gap between fundamental research carried out in laboratories and clinical research carried out on patients. The aim is to have laboratories, practitioners and patients working closely together to make new treatments – cancer treatments in particular – available as quickly as possible. Committing to the realization of the Onco-dermatology project in Toulouse at the turn of the millennium, with its campus housing researchers, clinicians, practitioners and patients on the same site, Pierre Fabre Laboratories took an interest in translational medicine very early on. Everything is now up and running. The Pierre Fabre Research Center is just over the road from the Toulouse University Cancer Institute - Oncopole (IUCT-O). The IUCT-O clinic receives 10,000 patients a year and is the first French treatment establishment to be awarded ISO 9001 certification for its management of clinical trials in cancer treatment. In 2016, the Group formed a partnership with the Toulouse Cancer Health Foundation and the French Institute of Health and Medical Research (INSERM), a translational medicine research chair focusing on immuno-oncology. With the support of the IUCT-O and integrated within the Toulouse Cancer Research Center (an INSERM structure), the chair will be managed by a doctor-researcher of international renown, for whom a recruitment drive was launched in June 2016.

Translational medicine: from laboratory to patient

At the Oncopole in Toulouse, the Pierre Fabre R&D Center is just over the road from the IUCT-O clinic. The IUCT-O clinic is the first French treatment clinic to receive ISO 9001 certification for its management of clinical trials in cancer treatment.
The development of a pharmaceuticals drug is a long and complex process, which on average takes 15 years, requiring 10,000 synthesized molecules to market one drug. To rise to this challenge, Pierre Fabre R&D relies on 5 main areas of expertise.

Natural substances:
Plants and water are a source of multi-disciplinary scientific experiments with the aim of developing original active ingredients used in the fields of pharmaceuticals, family health care and dermo-cosmetics.

Immunoconjugates:
At the crossroads of chemistry and biotechnologies, they are currently a booming class of pharmaceuticals for cancer treatment because they allow the active components to be delivered to the very core of a cancerous cell without affecting the healthy cells. Our research teams have complementary know-how for designing, producing and assessing such molecules, by combining the expertise of targeted biotherapies developed in Saint-Julien-en-Genevois, knowledge on the cytotoxic agents studied at Toulouse-Oncopole and the chemistry know-how of the teams in Toulouse.

New chemical entities:
Technological advances in molecular and cellular biology, structural biology, molecular modeling and medicinal chemistry contribute to the discovery of innovative therapeutic principles. These therapeutic principles are approved through the implementation of pharmacological models similar to situations tested during studies on patients, and are therefore highly predictive. Today, this expertise is an essential line of research, particularly in oncology and neuropsychiatry.

Biotherapies:
Based on monoclonal antibodies and recombinant proteins, biotherapies are also at the cutting edge of Pierre Fabre research, and have been studied by us for over 15 years. The interest in monoclonal antibodies lies in their highly targeted mode of action, their efficacy and their better tolerability in relation to chemotherapy treatments.

Translational medicine:
To move more quickly and safely from pure research to proof of concept and then to the drug administered to the patient, Pierre Fabre R&D now uses translational medicine, an accelerated clinical development strategy based on innovative clinical designs.

Immunooconjugates:
At the crossroads of chemistry and biotechnologies, they are currently a booming class of pharmaceuticals for cancer treatment because they allow the active components to be delivered to the very core of a cancerous cell without affecting the healthy cells. Our research teams have complementary know-how for designing, producing and assessing such molecules, by combining the expertise of targeted biotherapies developed in Saint-Julien-en-Genevois, knowledge on the cytotoxic agents studied at Toulouse-Oncopole and the chemistry know-how of the teams in Toulouse.

Alongside surgery, radiotherapy, chemotherapy and targeted therapies based on kinase inhibitors, immuno-oncology is now the No. 5 course of treatment for cancer. This new-generation treatment is mainly based on monoclonal antibodies, the molecules naturally produced by our immune system to fight against molecules identified as being foreign by the body.

The Pierre Fabre Immunology Center (CIPF) started looking at antibodies in the early 2000s. While chemotherapy molecules affect cancerous and non-cancerous cells indiscriminately, the CIPF wants to develop new antibodies that specifically recognize tumorous cells, preventing their growth while reducing side effects.

The advent of antibodies has opened up a whole field of research into their derivatives. For the past three years, the stars of cancer treatment have been immunomodulators. These antibodies help patients’ immune systems to “unlock themselves” and fight the tumor. At the CIPF, we are trying to find the right antibody formula for each type of cancer. Current research involves combining several immunomodulators with each other and combining immunoconjugates and immunomodulators, to improve the efficacy of the molecules even further.
Sterile Cosmetics

Since the 1990s, Group researchers and engineers have been designing a unique system for the manufacture of sterile preservative-free skin care products, in the form of disposable single-dose, for the most demanding skin types. To make these sterile products accessible to as many people as possible and to promote compliance with treatments, a new research project has been put in place. This resulted in the launch of a new generation of skin care in 2009: Sterile Cosmetics.

Sterile cosmetics, which ensure absolute efficacy and safety for the most demanding types of skin (baby’s skin, hypersensitive skin, diseased skin and, in particular, atopy-prone skin), are currently the only products to guarantee:

- Preservative-free products containing only the absolutely essential active substances
- A unique manufacturing process developed by Pierre Fabre Laboratories: sterilizing formulas via infusion and packaging them in a sterile environment, according to current standards in the pharmaceutical industry
- Sterility of the product throughout its use thanks to DEFI (Device for Exclusive Formula Integrity), a patented packaging system. DEFI makes it possible to maintain the sterility of the product, even after the tube has been opened, with no risk of bacterial contamination throughout use.

Marketed from 2009 under the Eau thermale Avène brand (Valeure Externe range), Sterile Cosmetics are also available with the A-Derma and Ducray brands. They will be gradually extended to other Pierre Fabre Group products designed for the most demanding types of skin.

Microbiota: By developing truly "microbiotic" dermo-cosmetics that promote and restore the diversity of microbial skin flora, researchers from Pierre Fabre Dermo-Cosmetics offer an innovative treatment with effective and well-tolerated care.

Studying combinations of filter systems meeting various criteria (broad absorption spectrum, water resistance, etc.) cosmetic absorption spectrum, water criteria: chemical (broad filter systems meeting various criteria (safety (local tolerance) and (good sensory qualities), resistance, etc.), cosmetic absorption spectrum, water criteria: chemical (broad filter systems meeting various criteria (safety (local tolerance) and (good sensory qualities), resistance, etc.),

Sterile Cosmetics: Diverse technology that offers formulas containing only the essential active ingredients for the most sensitive skin types, with no preservatives. The guarantee of a safe and effective formula throughout the duration of use.

Photoprotection: By carefully understanding the biology of the epidermal barrier and identifying active ingredients that foster skin hydration, strengthening the barrier function, resistance to different types of stress or even cell repair.

Hair biology: Studying the cellular and molecular mechanisms that contribute to regulating the hair cycle, sebum, hydration and scalp sensitivity, to improve the treatment of various types of hair loss and other disorders associated with the scalp.

To enhance our offer of dermo-cosmetics and offering new anti-aging targets and active ingredients to support the different types of stress or even cell repair.

A skin aging: Understanding the mechanisms involved in the skin aging process and offering new anti-aging active ingredients.

Barrier function: Better understanding the biology of the epidermal barrier and identifying active ingredients that foster skin hydration, strengthening the barrier function, resistance to different types of stress or even cell repair.

Hair biology: Studying the cellular and molecular mechanisms that contribute to regulating the hair cycle, sebum, hydration and scalp sensitivity, to improve the treatment of various types of hair loss and other disorders associated with the scalp.

Hair biology: Studying the cellular and molecular mechanisms that contribute to regulating the hair cycle, sebum, hydration and scalp sensitivity, to improve the treatment of various types of hair loss and other disorders associated with the scalp.

Hair biology: Studying the cellular and molecular mechanisms that contribute to regulating the hair cycle, sebum, hydration and scalp sensitivity, to improve the treatment of various types of hair loss and other disorders associated with the scalp.

Hair biology: Studying the cellular and molecular mechanisms that contribute to regulating the hair cycle, sebum, hydration and scalp sensitivity, to improve the treatment of various types of hair loss and other disorders associated with the scalp.

Hair biology: Studying the cellular and molecular mechanisms that contribute to regulating the hair cycle, sebum, hydration and scalp sensitivity, to improve the treatment of various types of hair loss and other disorders associated with the scalp.